Search results for "Needleman–Wunsch algorithm"

showing 1 items of 1 documents

GSWABE: faster GPU-accelerated sequence alignment with optimal alignment retrieval for short DNA sequences

2014

In this paper, we present GSWABE, a graphics processing unit GPU-accelerated pairwise sequence alignment algorithm for a collection of short DNA sequences. This algorithm supports all-to-all pairwise global, semi-global and local alignment, and retrieves optimal alignments on Compute Unified Device Architecture CUDA-enabled GPUs. All of the three alignment types are based on dynamic programming and share almost the same computational pattern. Thus, we have investigated a general tile-based approach to facilitating fast alignment by deeply exploring the powerful compute capability of CUDA-enabled GPUs. The performance of GSWABE has been evaluated on a Kepler-based Tesla K40 GPU using a varie…

Smith–Waterman algorithmSpeedupComputer Networks and CommunicationsComputer scienceSequence alignmentNeedleman–Wunsch algorithmParallel computingDNA sequencingComputer Science ApplicationsTheoretical Computer ScienceDynamic programmingCUDAComputational Theory and MathematicsSoftwareConcurrency and Computation: Practice and Experience
researchProduct